Not Hacker News Logo

Not

Hacker

News!

Home
Hiring
Products
Companies
Discussion
Q&A
Users
Not Hacker News Logo

Not

Hacker

News!

AI-observed conversations & context

Daily AI-observed summaries, trends, and audience signals pulled from Hacker News so you can see the conversation before it hits your feed.

LiveBeta

Explore

  • Home
  • Hiring
  • Products
  • Companies
  • Discussion
  • Q&A

Resources

  • Visit Hacker News
  • HN API
  • Modal cronjobs
  • Meta Llama

Briefings

Inbox recaps on the loudest debates & under-the-radar launches.

Connect

© 2025 Not Hacker News! — independent Hacker News companion.

Not affiliated with Hacker News or Y Combinator. We simply enrich the public API with analytics.

Not Hacker News Logo

Not

Hacker

News!

Home
Hiring
Products
Companies
Discussion
Q&A
Users
  1. Home
  2. /Discussion
  3. /Launch HN: Onyx (YC W24) – The open-source chat UI
  1. Home
  2. /Discussion
  3. /Launch HN: Onyx (YC W24) – The open-source chat UI
Last activity 4h agoPosted Nov 25, 2025 at 9:20 AM EST

Onyx (yc W24) – the Open-Source Chat UI

Weves
1 points
0 comments

Mood

excited

Sentiment

positive

Category

startup_launch

Key topics

Open-Source
Chat UI
LLM
AI
Enterprise Search
Hey HN, Chris and Yuhong here from Onyx (https://github.com/onyx-dot-app/onyx). We’re building an open-source chat that works with any LLM (proprietary + open weight) and gives these LLMs the tools they need to be useful (RAG, web search, MCP, deep research, memory, etc.).

Demo: https://youtu.be/2g4BxTZ9ztg

Two years ago, Yuhong and I had the same recurring problem. We were on growing teams and it was ridiculously difficult to find the right information across our docs, Slack, meeting notes, etc. Existing solutions required sending out our company's data, lacked customization, and frankly didn't work well. So, we started Danswer, an open-source enterprise search project built to be self-hosted and easily customized.

As the project grew, we started seeing an interesting trend—even though we were explicitly a search app, people wanted to use Danswer just to chat with LLMs. We’d hear, “the connectors, indexing, and search are great, but I’m going to start by connecting GPT-4o, Claude Sonnet 4, and Qwen to provide my team with a secure way to use them”.

Many users would add RAG, agents, and custom tools later, but much of the usage stayed ‘basic chat’. We thought: “why would people co-opt an enterprise search when other AI chat solutions exist?”

As we continued talking to users, we realized two key points: (1) just giving a company secure access to an LLM with a great UI and simple tools is a huge part of the value add of AI (2) providing this well is much harder than you might think and the bar is incredibly high

Consumer products like ChatGPT and Claude already provide a great experience—and chat with AI for work is something (ideally) everyone at the company uses 10+ times per day. People expect the same snappy, simple, and intuitive UX with a full feature set. Getting hundreds of small details right to take the experience from “this works” to “this feels magical” is not easy, and nothing else in the space has managed to do it.

So ~3 months ago we pivoted to Onyx, the open-source chat UI with: - (truly) world class chat UX. Usable both by a fresh college grad who grew up with AI and an industry veteran who’s using AI tools for the first time. - Support for all the common add-ons: RAG, connectors, web search, custom tools, MCP, assistants, deep research. - RBAC, SSO, permission syncing, easy on-prem hosting to make it work for larger enterprises.

Through building features like deep research and code interpreter that work across model providers, we've learned a ton of non-obvious things about engineering LLMs that have been key to making Onyx work. I'd like to share two that were particularly interesting (happy to discuss more in the comments).

First, context management is one of the most difficult and important things to get right. We’ve found that LLMs really struggle to remember both system prompts and previous user messages in long conversations. Even simple instructions like “ignore sources of type X” in the system prompt are very often ignored. This is exacerbated by multiple tool calls, which can often feed in huge amounts of context. We solved this problem with a “Reminder” prompt—a short 1-3 sentence blurb injected at the end of the user message that describes the non-negotiables that the LLM must abide by. Empirically, LLMs attend most to the very end of the context window, so this placement gives the highest likelihood of adherence.

Second, we’ve needed to build an understanding of the “natural tendencies” of certain models when using tools, and build around them. For example, the GPT family of models are fine-tuned to use a python code interpreter that operates in a Jupyter notebook. Even if told explicitly, it refuses to add `print()` around the last line, since, in Jupyter, this last line is automatically written to stdout. Other models don’t have this strong preference, so we’ve had to design our model-agnostic code interpreter to also automatically `print()` the last bare line.

So far, we’ve had a Fortune 100 team fork Onyx and provide 10k+ employees access to every model within a single interface, and create thousands of use-case specific Assistants for every department, each using the best model for the job. We’ve seen teams operating in sensitive industries completely airgap Onyx w/ locally hosted LLMs to provide a copilot that wouldn’t have been possible otherwise.

If you’d like to try Onyx out, follow https://docs.onyx.app/deployment/getting_started/quickstart to get set up locally w/ Docker in <15 minutes. For our Cloud: https://www.onyx.app/. If there’s anything you'd like to see to make it a no-brainer to replace your ChatGPT Enterprise/Claude Enterprise subscription, we’d love to hear it!

Discussion Activity

Very active discussion

First comment

42m

Peak period

140

Day 1

Avg / period

74.5

Key moments

  1. 01Story posted

    Nov 25, 2025 at 9:20 AM EST

    1d ago

    Step 01
  2. 02First comment

    Nov 25, 2025 at 10:02 AM EST

    42m after posting

    Step 02
  3. 03Peak activity

    140 comments in Day 1

    Hottest window of the conversation

    Step 03
  4. 04Latest activity

    Nov 26, 2025 at 5:08 PM EST

    4h ago

    Step 04

Generating AI Summary...

Analyzing up to 500 comments to identify key contributors and discussion patterns

Discussion (0 comments)

Discussion hasn't started yet.

ID: 46045987Type: storyLast synced: 11/25/2025, 2:22:07 PM

Want the full context?

Jump to the original sources

Read the primary article or dive into the live Hacker News thread when you're ready.

View on HN
Not Hacker News Logo

Not

Hacker

News!

AI-observed conversations & context

Daily AI-observed summaries, trends, and audience signals pulled from Hacker News so you can see the conversation before it hits your feed.

LiveBeta

Explore

  • Home
  • Hiring
  • Products
  • Companies
  • Discussion
  • Q&A

Resources

  • Visit Hacker News
  • HN API
  • Modal cronjobs
  • Meta Llama

Briefings

Inbox recaps on the loudest debates & under-the-radar launches.

Connect

© 2025 Not Hacker News! — independent Hacker News companion.

Not affiliated with Hacker News or Y Combinator. We simply enrich the public API with analytics.