Doomscrolling
openpaperdigest.comKey Features
Tech Stack
Key Features
Tech Stack
If there was one of these for non-AI papers I'd easily lose hours each day
Totally off topic, but come to think of it, I'd love to see more feeds support anti-bubbling (show me _less_ of what I've frequently consumed)
What topics are you interested in?
Two different directions I'm thinking of for Open Paper Digest:
- either some recommendation algorithm that figures out which topics you are interested in and serves you papers based on that. Would need a good way to get signals though. That's why I'm now bootstrapping the process with Huggingface Trending Papers, but that immediately constrains the topics.
- or more search driven, where you type "I'd like to read about X" and it starts your feed
With regards to anti-bubbling: interesting thought, a "reverse" recommendation algorithm...
for filters, create a set of pre-defined tags and let the LLM choose one of your pre-defined tags from the paper's summary.
That's just it - any list I give would probably miss the mark. I guess it all ties back to computational thinking in some way? (physics, neuroscience, rendering algorithms, medicine, linguistics, category theory)
Perhaps if recommendation algorithms could be that generalised it would scratch most of the desire for a good anti-bubble..
But still misses that special sauce of discovering papers/topics I didn't know I was interested in.
Libraries and stumbling into random university lectures did this very well (or newsagents, video shops, etc..) -- broadening rather than narrowing
LLMs / vector space seem well placed to automate this kind of expansive/lateral matching -- but it does seem we (or marketers) tend to build recommenders around the assumption that individuals' interests are a singularity to zero in on.. (and so likely train our models for same)
Anyway - end rant - thanks again, really cool project! Clearly got me inspired :)
One suggestion: could you add tags to the research papers so readers can more easily filter by their interests? For example, I’m looking to follow recent work from top venues like NeurIPS specifically on training code-oriented LLMs. Tagging would make it much easier to dive into topics like that.
Thanks for your effort
For example, I can “cache” your page as a shared link in this comment
https://www.openpaperdigest.com/paper/paperdebugger-a-plugin...
Or in a gist somewhere:
https://gist.github.com/ontouchstart/38d80cab66794014d17e193...
Then I can have a bot to scrape these pages with context as training data.
This can be out of hands for you in inference cost. Then you need VC money to sustain your website. Wish you the best luck to get there.
https://gist.github.com/ontouchstart/03f4c7ee853061772b479d9...
Not affiliated with Hacker News or Y Combinator. We simply enrich the public API with analytics.