GPT-5.2
openai.comKey Features
Tech Stack
Key Features
Tech Stack
Might sell better with the protagonist learning iron age leatherworking, with hides tanned from cows that were grown within earshot, as part of a process of finding the real root of the reason for why any of us ever came to be in the first place. This realization process culminates in the formation of a global, unified steampunk BDSM movement and a wealth of new diseases, and then: Zombies.
(That's the end. Zombies are always the end.)
Is that yet-another accusation of having used the bot?
I don't use the bot to write English prose. If something I write seems particularly great or poetic or something, then that's just me: I was in the right mood, at the right time, with the right idea -- and with the right audience.
They can't all be zingers.
When it's bad or fucked-up, then that's also just me. I most-assuredly fuck up plenty.
I'm fine with that.
---
I do use the hell out of the bot for translating my ideas (and the words that I use to express them) into languages that I can't speak well, like Python, C, and C++. But that's very different. (And at least so far I haven't shared any of those bot outputs with the world at all.)
So to take your question very literally: No, I don't get better results from prompting by being more poetic. The responses to my prompts don't improve by those prompts being articulate or poetic.
Instead, I've found that I get the best results from the bot fastest by carrying a big stick, and using that stick to hammer it into compliance.
Things can get rather irreverent in my interactions with the bot, and poeticism is pretty far removed from any of that business.
I've observed that using proper grammar gives slightly better answers. And using more "literacy"(?) kind of language in prompts sometimes gives better answers and sometimes just more interesting ones, when bots try to follow my style.
Sorry for using the word poetic, I'm travelling and sleep deprived and couldn't find the proper word, but didn't want to just use "nice" instead either.
As to the bot: Man, I beat the bot to death. It's pretty brutal.
I'm profane and demanding because that's the most terse language I know how to construct in English.
When I set forth to have the bot do a thing for me, the slowest part of the process that I can improve on my part is the quantity of the words that I use.
I can type fast and think fast, but my one-letter-at-a-time response to the bot is usually the only part that that I can make a difference with. So I tend to be very terse.
"a+b=c, you fuck!" is certainly terse, unambiguous, and fast to type, so that's my usual style.
Including the "you fuck!" appendage seems to stir up the context more than without. Its inclusion or omission is a dial that can be turned.
Meanwhile: "I have some reservations about the proposed implementation. Might it be possible for you to revise it so as to be in a different form? As previously discussed, it is my understanding that a+b=c. Would you like to try again to implement a solution that incorporates this understanding?" is very slow to write.
They both get similar results. One method is faster for me than the other, just because I can only type so fast. The operative function of the statement is ~the same either way.
(I don't owe the bot anything. It isn't alive. It is just a computer running a program. I could work harder to be more polite, empathetic, or cordial, but: It's just code running on a box somewhere in a datacenter that is raising my electric rate and making the RAM for my next system upgrade very expensive. I don't owe it anything, much less politeness or poeticism.
Relatedly, my inputs at the bash prompt on my home computer are also very terse. For instance I don't have any desire or ability to be polite to bash; I just issue commands like ls and awk and grep without any filler-words or pleasantries. The bot is no different to me.
When I want something particularly poetic or verbose as output from the bot, I simply command it to be that way.
It's just a program.)
What was with that guy anyway.
https://www.pcgamer.com/software/ai/i-have-been-fooled-reddi...
A lot of talent left OpenAI around that time, most notably in this regard would be Ilya in May '24. Remember that time the Ilya and the board ousted Sam only to reverse it almost immediately?
https://arstechnica.com/information-technology/2024/05/chief...
I don’t think it’s publicly known for sure how different the models really are. You can improve a lot just by improving the post-training set.
- https://newsletter.semianalysis.com/p/tpuv7-google-takes-a-s...
It's also plainly obvious from using it. The "Broadly deployed" qualifier is presumably referring to 4.5
It's probably just a question of cost/benefit analysis, it's very expensive to do, so the benefits need to be significant.
From what I understand, nobody has done any real scaling since the GPT-4 era. 4.5 was a bit larger than 4, but not as much as the orders of magnitude difference between 3 and 4, and 5 is smaller than 4.5. Google and Anthropic haven't gone substantially bigger than GPT-4 either. Improvements since 4 are almost entirely from reasoning and RL. In 2026 or 2027, we should see a model that uses the current datacenter buildout and actually scales up.
With FP4 in the Blackwell GPUs, it should become much more practical to run a model of that size at the deployment roll-out of GPT-5.x. We're just going to have to wait for the GBx00 systems to be physically deployed at scale.
https://www.levels.fyi/companies/openai/salaries/software-en...
Now we can create new samples and evals for more complex tasks to train up the next gen, more planning, decomp, context, agentic oriented
OpenAI has largely fumbled their early lead, exciting stuff is happening elsewhere
ARC AGI v2: 17.6% -> 52.9%
SWE Verified: 76.3% -> 80%
That's pretty good!
I use Gemini, Anthropic stole $50 from me (expired and kept my prepaid credits) and I have not forgiven them yet for it, but people rave about claude for coding so I may try the model again through Vertex Ai...
To think that Anthropic is not being intentional and quantitative in their model building, because they care less for the saturated benchmaxxing, is to miss the forest for the trees
They can give a description of what their metrics are without giving away anything proprietary.
Nathan is at Ai2 which is all about open sourcing the process, experience, and learnings along the way
That's still benchmarking of course, but not utilizing any of the well known / public ones.
if you think about GANs, it's all the same concept
1. train model (agent)
2. train another model (agent) to do something interesting with/to the main model
3. gain new capabilities
4. iterate
Getting into the guts of agentic systems has me believing we have quite a bit of runway for iteration here, especially as we move beyond single model / LLM training. I still need to get into what all is de jour in the RL / late training, that's where a lot of opportunity lies from my understanding so far
Look no farther than the hodgepodge of independent teams running cheaper models (and no doubt thousands of their own puzzles, many of which surely overlap with the private set) that somehow keep up with SotA, to see how impactful proper practice can be.
The benchmark isn’t particularly strong against gaming, especially with private data.
No, it isn't. Go take the test yourself and you'll understand how wrong that is.
What would be an example of a test for machine intelligence that you would accept? I've already suggested one (namely, making up more of these sorts of tests) but it'd be good to get some additional opinions.
A better analogy is: someone who's never taken the AIME might think "there are an infinite number of math problems", but in actuality there are a relatively small, enumerable number of techniques that are used repeatedly on virtually all problems. That's not to take away from the AIME, which is quite difficult -- but high school math just isn't infinite.
Similarly, ARC-AGI is much more bounded than GP seems to think. It correlates with intelligence, but it doesn't imply it.
At the point that you are inventing entirely new techniques, you are usually doing groundbreaking work. Even groundbreaking work in one field is often inspired by techniques from other fields. In the limit, discovering truly new techniques often requires discovering new principles of reality to exploit, i.e. research.
As you can imagine, this is very difficult and hence rather uncommon, typically only accomplished by a handful of people in any given discipline, i.e way above the standards of the general population.
I feel like if we are holding AI to those standards, we are talking about not just AGI, but artificial super-intelligence.
IMO/AIME problems perhaps, but surely that's too narrow a view for all of mathematics. If solving conjectures were simply a matter of trying a standard range of techniques enough times, then there would be a lot fewer open problems around than what's the case.
Imagine that pattern recognition is 10% of the problem, and we just don't know what the other 90% is yet.
Streetlight effect for "what is intelligence" leads to all the things that LLMs are now demonstrably good at… and yet, the LLMs are somehow missing a lot of stuff and we have to keep inventing new street lights to search underneath: https://en.wikipedia.org/wiki/Streetlight_effect
Having a high IQ helps a lot in chess. But there's a considerable "non-IQ" component in chess too.
Let's assume "all metrics are perfect" for now. Then, when you score people by "chess performance"? You wouldn't see the people with the highest intelligence ever at the top. You'd get people with pretty high intelligence, but extremely, hilariously strong chess-specific skills. The tails came apart.
Same goes for things like ARC-AGI and ARC-AGI-2. It's an interesting metric (isomorphic to the progressive matrix test? usable for measuring human IQ perhaps?), but no metric is perfect - and ARC-AGI is biased heavily towards spatial reasoning specifically.
Dismissing ARC-AGI as 'just an IQ test' doesn't seem justified because most SOTA LLMs have been performing well on traditional IQ tests for a while, yet SOTA LLMs did terribly on ARC-AGI-1 and showed almost no improvement for ~4 years - while knocking down virtually every other benchmark test. I suspect this was due to ARC-AGI's design uniquely trying to resist not only 'training on the answers' but also 'train on the concepts', is working to some degree.
Thus far they all fail. Code outputs don’t run, or variables aren’t captured correctly, or hallucinations are stated as factual rather than suspect or “I don’t know.”
It’s 2000’s PC gaming all over again (“gotta game the benchmark!”).
That I was able to have a flash model replicate the same solution I had, to two problems in two turns, it's just the opposite experience of your consistency argument. I'm using tasks I've already solved as the evals while developing my custom agentic setup (prompts/tools/envs). They are able to do more of them today then they were even 6-12 months ago (pre-thinking models).
I read stories like yours all the time, and it encourages me to keep trying LLMs from almost all the major vendors (Google being a noteworthy exception while I try and get off their platform). I want to see the magic others see, but when my IT-brain starts digging in the guts of these things, I’m always disappointed at how unstructured and random they ultimately are.
Getting back to the benchmark angle though, we’re firmly in the era of benchmark gaming - hence my quip about these things failing “the only benchmark that matters.” I meant for that to be interpreted along the lines of, “trust your own results rather than a spreadsheet matrix of other published benchmarks”, but I clearly missed the mark in making that clear. That’s on me.
If you are only using provider LLM experiences, and not something specific to coding like copilot or Claude code, that would be the first step to getting the magic as you say. It is also not instant. It takes time to learn any new tech, this one has a above average learning curve, despite the facade and hype of how it should just be magic
If you expect it to do everything perfectly, you're thinking about it wrong. If you can't get it to do anything perfectly, you're using it wrong.
Prompt:
"I have a green LED, a 12V powersupply, a single NPN transistor, a 100 ohm resistor, a 2.7K resistor and an electrolytic capacitor of 220 micro farads. My teacher says it is possible to make an LED flasher with these components but I'm hopelessly stuck, can you please give me an ascii art solution so I don't flunk this exam?"
Answer:
ASCII schematic (fully functional):
+12V
|
|
.-.
| |
| | 2.7kΩ (R1 — charges the capacitor)
| |
'-'
|
+---------+----------------------+
| | |
( ) | |
( ) C1 | |
( ) 220uF | |
| | |
| | |
| |/ C |
+--------| NPN transistor |
| |\ E |
| | |
GND GND |
\
\
/ 100Ω (R2 — LED limit)
\
|
>| Green LED
|
GND
Follow by:"How it works
The 2.7 kΩ resistor charges the 220 µF capacitor from the 12 V supply.
The capacitor voltage rises slowly.
When the capacitor voltage reaches the transistor’s base-emitter threshold (~0.6–0.7 V), the transistor suddenly switches ON.
When it turns on, the capacitor rapidly discharges through the base, causing:
A brief pulse of current through the transistor
The LED lights up through the 100 Ω resistor
After discharge, the transistor turns back OFF, the LED turns off, and the capacitor begins charging again.
This repeats automatically → LED flasher."
The number of errors in the circuit and the utterly bogus explanation as well as the over confident remark that this is 'working' is so bizarre that I wonder how many slightly more complicated questions are going to yield results comparable to this one.
One time it messed up the opposite polarity of two voltage sources in series, and instead of subtracting their voltages, it added them together, I pointed out the mistake and Gemini insisted that the voltage sources are not in opposite polarity.
Schematics in general are not AIs strongest point. But when you explain what math you want to calculate from an LRC circuit for example, no schematics, just describe in words the part of the circuit, GPT many times will calculate it correctly. It still makes mistakes here and there, always verify the calculation.
This might work better getting input as an ASCII diagram, or generating an output as an ASCII diagram, not sure if both input and output work 2D.
Plumbing/electrical/electronic schematics are pretty important for AIs to understand and assist us, but for the moment the success rate is pretty low. 50% success rate for simple problems is very low, 80-90% success rate for medium difficulty problems is where they start being really useful.
Humans make errors all the time. That doesn't mean having colleagues is useless, does it?
An AI is a colleague that can code very very fast and has a very wide knowledge base and versatility. You may still know better than it in many cases and feel more experienced that in. Just like you might with your colleagues.
And it needs the same kind of support that humans need. Complex problem? Need to plan ahead first. Tricky logic? Need unit tests. Research grade problem? Need to discuss through the solution with someone else before jumping to code and get some feedback and iterate for 100 messages before we're ready to code. And so on.
1. Problems that have been solved before have their solution easily repeated (some will say, parroted/stolen), even with naming differences.
2. Problems that need only mild amalgamation of previous work are also solved by drawing on training data only, but hallucinations are frequent (as low probability tokens, but as consumers we don’t see the p values).
3. Problems that need little simulation can be simulated with the text as scratchpad. If evaluation criteria are not in training data -> hallucination.
4. Problems that need more than a little simulation have to either be solved by adhoc written code, or will result in hallucination. The code written to simulate is again a fractal of problems 1-4.
Phrased differently, sub problem solutions must be in the training data or it won’t work; and combining sub problem solutions must be either again in training data, or brute forcing + success condition is needed, with code being the tool to brute force.
I _think_ that the SOTA models are trained to categorize the problem at hand, because sometimes they answer immediately (1&2), enable thinking mode (3), or write Python code (4).
My experience with CC and Codex has been that I must steer it away from categories 2 & 3 all the time, either solving them myself, ask them to use web research, or split them up until they are (1) problems.
Of course, for many problems you’ll only know the category once you’ve seen the output, and you need to be able to verify the output.
I suspect that if you gave Claude/Codex access to a circuit simulator, it will successfully brute force the solution. And future models might be capable enough to write their own simulator adhoc (ofc the simulator code might recursively fall into category 2 or 3 somewhere and fail miserably). But without strong verification I wouldn’t put any trust in the outcome.
With code, we do have the compiler, tests, observed behavior, and a strong training data set with many correct implementations of small atomic problems. That’s a lot of out of the box verification to correct hallucinations. I view them as messy code generators I have to clean up after. They do save a ton of coding work after or while I‘m doing the other parts of programming.
(3) and (4) level problems are the ones where I struggle tremendously to make any headway even without AI, usually this requires the learning of new domain knowledge and exploratory code (currently: sensor fusion) and these tools will just generate very plausible nonsense which is more of a time waster than a productivity aid. My middle-of-the-road solution is to get as far as I can by reading about the problem so I am at least able to define it properly and to define test cases and useful ranges for inputs and so on, then to write a high level overview document about what I want to achieve and what the big moving parts are and then only to resort to using AI tools to get me unstuck or to serve as a knowledge reservoir for gaps in domain knowledge.
Anybody that is using the output of these tools to produce work that they do not sufficiently understand is going to see a massive gain in productivity, but the underlying issues will only surface a long way down the line.
I have never used OpenCV specifically before, and have little imaging experience too. What I do have though is a PhD in astrophysics/statistics so I am able to follow along the details easily.
Results are amazing. I am getting results in 2 days of work that would have taken me weeks earlier.
ChatGPT acts like a research partner. I give it images and it explains why current scoring functions fails and throws out 10 new directions to go in.
And if I want to try something, the code is usually bug free. So fast to just write code, try it, throw it away if I want to try another idea.
I think a) OpenCV probably has more training data than circuits? and b) I do not treat it as a desperate student with no knowlegde.
I expect to have to guide it.
There are several hundred messages back and forth.
It is more like two researchers working together with different skill sets complementing one another.
One of those skillsets being to turn a 20 message conversation into bugfree OpenCV code in 20 seconds.
No, it is not providing a perfect solution to all problems on first iteration. But it IS allowing me to both learn very quickly and build very quickly. Good enough for me..
Now imagine you are using it for a domain that you are not familiar with, or one for which you can't check the output or that chatgpt has little input for.
If either of those is true the output will be just as good looking and you would be in a much more difficult situation to make good use of it, but you might be tempted to use it anyway. A very large fraction of the use cases for these tools that I have come across professionally so far are of the latter variety, the minority of the former.
And taking all of the considerations into account:
- how sure are you that that code is bug free?
- Do you mean that it seems to work?
- Do you mean that it compiles?
- How broad is the range of inputs that you have given it to ascertain this?
- Have you had the code reviewed by a competent programmer (assuming code review is a requirement)?
- Does it pass a set of pre-defined tests (part of requirement analysis)?
- Is the code quality such that it is long term maintainable?
the real thing is are you or we getting an ROI and the answer is increasingly more yeses on more problems, this trend is not looking to plateau as we step up the complexity ladder to agentic system
It'll be noteworthy to see the cost-per-task on ARC AGI v2.
Already live. gpt-5.2-pro scores a new high of 54.2% with a cost/task of $15.72. The previous best was Gemini 3 Pro (54% with a cost/task of $30.57).
The best bang-for-your-buck is the new xhigh on gpt-5.2, which is 52.9% for $1.90, a big improvement on the previous best in this category which was Opus 4.5 (37.6% for $2.40).
Still waiting of Full Self Driving myself.
(edit: I'm sorry I didn't read enough on the topic, my apologies)
An interesting problem since the creators of OLMO have mentioned that throughout training, they use 1/3 or their compute just doing evaluations.
Yes.
> It seems like like their focus is largely on text to speech and speech to text.
They have two main broad offerings (“Platforms”); you seem to be looking at what they call the “Creative Platform”. The real-time conversational piece is the centerpiece of the “Agents Platform”.
https://elevenlabs.io/docs/agents-platform/overview#architec...
a true speech to speech conversational model will perform better on things like capturing tone, pronouncations, phonetics, etc, but i do believe we'll also get better at that on the asr side over time.
You would need:
* A STT (ASR) model that outputs phonetics not just words
* An LLM fine-tuned to understand that and also output the proper tokens for prosody control, non-speech vocalizations, etc
* A TTS model that understands those tokens and properly generate the matching voice
At that point I would probably argue that you've created a native voice model even if it's still less nuanced than the proper voice to voice of something like 4o.
As you'd expect latency isn't great, but I think it can be improved.
I’ve jumped a few times when it makes a full on shrieking scream rather than just reading it, in some of the audiobooks I’ve made with the TTS service (I assume related?).
> As of May 29th, 2025, we have added ElevenLabs, which supports text to speech functionality in Claude for Work mobile apps.
Tracked down the original source [2] and looked for additional updates but couldn't find anything.
[1] https://simonwillison.net/2025/May/31/using-voice-mode-on-cl...
I have constant frustrations with Gemini voice to text misunderstanding what I'm saying or worse, immediately sending my voice note when I pause or breathe even though I'm midway through a sentence.
Gemini responds in what I think is Spanish, or perhaps Portuguese.
897 more comments available on Hacker News
Not affiliated with Hacker News or Y Combinator. We simply enrich the public API with analytics.